Главная -> Экология
Типы ветродвигателей. Переработка и вывоз строительного мусораИз нетрадиционных источников энергоресурсов значительный интерес во всем мире вызывает биогаз. Биогаз можно добывать из органической массы растительного происхождения при ферментации ее анаэробными бактериями в метантенках. В Китае уже в 1992г. работало 17 млн. метантенков разных размеров. За счет биогаза Китай обеспечивает около 30% своих потребностей в энергоносителях и к двухтысячному году планировал довести производство биогаза до 350 млн. т. условного топлива. В США, где постоянно проявляют заботу об энергосбережении, за счет биогаза обеспечивается 2% общего энергопотребления. Конгрессом США принята программа энергия из отходов . За счет биогаза и других источников, которые восстанавливаются, можно ожидать обеспечения около 40% энергопотребления. Англия выделяет ежегодно 100 млн. фунтов на научные и конструкторские разработки в направления возобновляемых источников энергии. Правительство контролирует национальную полного обеспечения энергетических потребностей сельского хозяйства за счет биогаза. Практически во всех странах Западной Европы созданы национальные программы по получению и использованию биогаза. В основе технологий, результатом которых есть производство биогаза, есть анаэробная биотехнология, то есть ферментация органических веществ в условиях полного отсутствия кислорода. Известно несколько десятков микроорганизмов, которые раскладывают сложные органические вещества на простые жирные кислоты и свыше десятка, которые перерабатывают эти кислоты на метан и СО2. Если идет речь о биогазе, как правило, имеют в виду, что источником его образования являются твердые органические отходы. Но есть еще и другой значительный потенциал получения биогаза путем анаэробной ферментации органических веществ растворённых в сточных водах, в особенности промышленных, где концентрация составляет десятки килограмм ХСК на 1 м3 воды. Больше всего растворённых органических веществ есть в сточных водах всех без исключения пищевых предприятий. В соответствии с данными Института охраны водных ресурсов (Харьков) только предприятия по переработке молока, производству сахара и спирта ежегодно сбрасывают большее 1 млн. тон ХСК. Сюда надо добавить еще стоки от других пищевых производств (мясо, пиво, безалкогольные напитки, вино, дрожжи и др.). Эти отходы загрязняют поверхностные и подземные воды, образовывая угрозу для нормального существования всего живого в воде. Современная технология для локального очищения стоков есть и уже десятки лет внедряется во всех странах мира, она имеет подавляющие преимущества перед классической, которую используют на городских очистительных сооружениях. Это анаэробная биотехнология, которая приспособлена для обезвреживания (биологического распада) органических веществ в анаэробной среде. Эта технология как и внедряется, как локальная, для предшествующего очищения высококонцентрированных стоков непосредственно на тех предприятиях, которые создают эти стоки. Анаэробная технология имеет много преимуществ над аэробной. Некоторые из них перечислены ниже. Затраты электроэнергии снижаются с 2 квт·ч на каждый кг ХСК до 0,25 квт·ч., то есть на 86,5% за счет отсутствия аэрации. Условно от анаэробной переработки 2 млн.т органических веществ, которые сбрасываются в Украине в пищевой промышленности, можно получить годовую экономию 3,5 млрд. квт·ч электроэнергии ежегодно. Примечание: ХСК (химическое потребление кислорода), БСК (биологическое потребление кислорода). Эти показатели характеризуют степень загрязненности сточных вод органическими веществами. На 1 кг переработанной ХСК выделяется 0,35 м3 чистого метана или 0,45 м3 биогаза. В масштабе Украины это может составить ежегодно почти 1 млрд. м3 биогаза, полноценного энергоносителя, который используется во всех случаях, где используется природный газ. Сжигание 1м3 биогаза на современной когенерационной установке дает возможность получить 2 квт·ч. электроэнергии и 4 квт·ч. тепловой энергии в виде горячей воды. На действующих аэрационных сооружениях из любого 1 кг сброшенного ХСК получается 0,59 кг органической биомассы - отмерших аэробных микроорганизмов. Эта биомасса имеет очень плохие характеристики с точки зрения ее утилизации. Она имеет коллоидную структуру и обезвоживается до 10-12% сухого вещества только при использовании дорогих полиэлектролитов. По данным Европейского Агентства охраны окружающей среды утилизация 1 т сухого ила стоит от 60 до 400 Евро. По этой причине избыточная биомасса накапливается на огромных бетонированных свалках, где частично высыхает и вывозится в отвалы, а в основном масса гниет. Например, на городских аэрационных сооружениях Днепропетровска под свалки отведена площадь 140 га. За счет постоянного гниения биомассы загрязняются подземные воды, а в окружающую среду выделяется большое количество парниковых газов (СН4, СО2). Метантенки для утилизации избыточного ила почти нигде не работают. Возникает вопрос - или тратить 2 квт.год. энергии на аэрацию для удаления 1 кг ХСК из сточной воды, а потом тратить дополнительно средства и энергию на сооружение и работу метантенков, или получать биогаз уже на стадии очищения сточных вод. Надо отметить, что при применении анаэробной ферментации получается всего 0,03 кг биомассы на 1 кг снятой ХСК. Остаток органических веществ преобразуется в метан. Сегодня в каждом городе на аэрационные сооружения сбрасывается до 30% сточных вод бытового характера. Остаток это высококонцентрированные, или разбавленные свежей водой стоки промышленных предприятий. В особенности злоупотребляют разбавлением предприятия, где используется очень дешевая свежая вода из артезианских буровых скважин. Именно по этой причине концентрация сточных вод украинских пивоварен у десятки раз ниже аналогичных предприятий Запада. Но, как не разбавляй, а в канализацию ежесуточно сбрасывается 6000 кг ХСК, если мощность пивзавода составляет 10 млн. декалитров в год. Заводы по производству хлебных дрожжей снимают до 250 кг ХСК на тонне продукции. Где-то посредине по количеству загрязнений находятся молокоперерабатывающие заводы. Нетрудно составить представление, какие резервы экономии энергоресурсов существуют в наших городах. Еще одна черта анаэробной биотехнологии - короткий срок возвращения капиталовложений. В странах Западной Европы за счет экономии энергии, получения и утилизации биогаза, снижения платы за очистку, окупаемость капиталовложений составляет 1-3 года. Компактность анаэробных станций очистки, полная герметичность и отсутствие запахов, архитектурные формы разрешают сооружать их на территории предприятий даже в густонаселенных кварталах городов. Таких примеров существует тысячи. Среди преимуществ анаэробной биотехнологии нельзя не отметить значительное снижение выбросов в атмосферу метана и СО2, которые являются основными газами, которые служат причиной глобального потепления. Например, снижение эмиссии парниковых газов в перерасчете на углеродный эквивалент составляет почти 2 млн. тон СО2 на протяжении амортизационного периода эксплуатации дрожжевого завода мощностью 120 тон в сутки. Внедрение анаэробной биотехнологии одновременно решает несколько важных проблем: энергосбережение; разгрузка городских аэрационных станций; снижение эмиссии парниковых газов. На рис.1 приведена схема сравнительных затрат энергии на 1 кг удаленной ХСК Рис.1. Диаграмма энергосбережения - Аэробный процесс; - Анаэробний процесс Эмиссия тепличных газов: СО2 + СН4 на 1 кг удалённой ХСК Аэробный процесс: CO2 => 2 кВт·ч * 0.965 = 1.93 кг/кг ХСК CH4 (в единицах CO2) => 0.58 * 0.25 * 20 = 2.9 кг/кг ХСК Анаэробний процесс: CO2 => 0.27кВт·ч * 0.965 = 0.26 кг/кг ХСК Рис. 2. Диаграмма снижения эмиссии парниковых газов На Украине уже есть опыт внедрения анаэробной биотехнологии. Введенный в эксплуатацию на Яготинском сахарном заводе промышленный модуль, рассчитанный на переработку 1т. ХСК в сутки прошел успешное испытание в сезон переработки сахарной свеклы в 2001 году. На протяжении трех суток после подачи сточных вод на реактор была достигнута полная мощность модуля. Организационно-техническую подготовку выполнили ООО Микробиологические системы (Киев) и ОАО Нефтехиммашпроект (Киев). Основная часть оборудования поставлена фирмой Биотан (Нидерланды). В 2002 г. крупнейший в Украине завод по производству хлебных дрожжей ЗАО Ензим (Львов) начал подготовку к внедрению полномасштабной промышленной станции анаэробного очищения сточных вод. Планируется установить реактор, рассчитанный на мощность переработки до 37 тон ХСК в сутки. Лицензионные узлы будут поставлены фирмой Биотан (Нидерланды), одной из ведущих фирм Западной Европы в области анаэробного очищения сточных вод. Консультативную помощь предоставляет ООО Микробиологические системы (МБС), которая и разработала исходные данные на проектирование. Надо отметить, что качество сточных вод даже на одинаковых по профилю предприятиях может иметь значительные отличия. Поэтому решение о промышленном внедрении можно принимать только после определения качественных характеристик сточных вод и выяснения эффективности их очищение анаэробным способом на пилотном уровне. ООО Микробиологические системы (МБС) уже выполнило несколько пилотних проектов с участием специалистов из Нидерландов и имеет необходимые знания и опыт в распространении анаэробной биотехнологии.
Большинство типов ветродвигателей известны уже давно, но история умалчивает имена их изобретателей. Ветроагрегаты делятся на две группы: ветродвигатели с горизонтальной осью вращения (крыльчатые – рис.1,2-1,5); ветродвигатели с вертикальной осью вращения (карусельные: лопастные (рис.1,1) и ортогональные (рис.1,6)). Рис.1. Типы ветродвигателей Крыльчатые ветродвигатели Типы крыльчатых ветродвигателей отличаются только количеством лопаток. Крыльчатый ветродвигатель состоит из следующих основных элементов: ветроколеса, головки, хвоста и башни. Ветроколесо превращает энергию ветра в механическую работу; оно может иметь одну или много лопастей, которые устанавливаются под некоторым углом к плоскости вращения ветроколеса. Крыло состоит из лопасти и маховика, который закрепляется на вале ветроколеса, как правило, перпендикулярно к оси вала. Головка представляет собой сопротивления, на которой монтируют вал ветроколеса и верхний передаточный механизм. Форма головки определяется системой передаточного механизма, конструкция и число степеней которого зависят от назначения и мощности ветродвигателя, а также числа оборотов ветроколеса и рабочей машины. Головка может свободно вращаться вокруг вертикальной оси в сопротивлениях башни. Хвост, который закрепляется за головкой, предназначен для установки ветроколеса на ветер; он работает подобно флюгеру. Башня служит для поднятия ветроколеса на высоту, на которой мало сказывается влияние препятствий, которые поднимают прямолинейное течение воздушного потока. В зависимости от рельефа местности и диаметра ветроколеса высоту башни для современных ветродвигателей принимают равной 6-20 м. Ветродвигатели малой мощности монтируют на столбе или трубе, укрепив их разтяжками. Известно, что скорость ветра увеличивается с высотой, поэтому, казалось бы, правильным строить башни настолько высокими, насколько разрешают технические возможности. Однако, повышение мощности является не единственным требованием при выборе высоты башни. Необходимо учитывать также вес, стоимость, условия монтажа, ремонта и обслуживания ветродвигателя. Высота башни должна быть избрана с таким расчетом, чтобы было удобно эксплуатировать ветродвигатель, но она не должна быть ниже препятствий, которые поднимают прямолинейное течение воздушного потока. Например, в степных районах с сильными ветрами высота башен ветродвигателей малой мощности может быть принятая не более 4-6 м, а в лесных - не менее 15м. Редуктор монтируют в подножии башни; он предназначен для передачи крутящего момента рабочим машинам. Для ветродвигателей, которые работают с поршневым насосом, который имеет кривошипный механизм, размещенный в головке ветродвигателя, а также для ветродвигателей, которые работают с генератором, размещенным в головке, редуктор в подножии башни не нужен. Механизм регулирования служит для ограничения числа оборотов и крутящего момента ветроколеса, а также для предотвращение выхода из строя ветродвигателя при буревых ветрах. Для крыльчатых ветродвигателей, наибольшая эффективность которых достигается при действии потока воздуха перпендикулярно к плоскости вращения лопастей-крыл, требуется устройство автоматического поворота оси вращения. С этой целью применяют кри-стабилизатор. Карусельные ветродвигатели обладают тем преимуществом, что могут работать при любом направлении ветра, не изменяя своего положения. Коэффициент использования энергии ветра в крыльчатых ветродвигателях намного выше, чем в карусельных. В то же время, в карусельных двигателях намного больший момент обращения. Он максимальный для карусельных лопастных агрегатов при нулевой относительной скорости ветра. Широкое распространение крыльчатых ветроагрегатов поясняется величиной скорости их вращения. Они могут непосредственно соединяться с генератором электрического тока без мультипликатора. Скорость вращения крыльчатых ветродвигателей обратно пропорциональна количеству крыльев, поэтому агрегаты с количеством лопастей более трех практически не используются. Карусельные ветродвигатели Рис.2. Ветродвигатель карусельного типа Рис.3. Однолопастной карусельный двигатель Расхождения в аэродинамике дает карусельным установкам преимущество в сравнении с традиционными ветряными мельницами. При увеличении скорости ветра они быстро наращивают силу тяги, после чего скорость обращения стабилизируется. Карусельные ветродвигатели тихоходные, и это разрешает использовать простые электрические схемы, например, с асинхронным генератором, без риска потерпеть аварию при случайном порыве ветра. Тихоходность выдвигает одно ограничивающее требование - использование многополюсного генератора, который работает на малых оборотах. Такие генераторы не имеют широкого распространения, а использование мультипликаторов не эффективно из-за низкого КПД последних. Еще более важным преимуществом карусельной конструкции постоянная его способность без дополнительных ухищрений следить за тем, откуда дует ветер , что очень существенно для приземных потоков. Ветродвигатели подобного типа строятся в США, Япони, Англи, Германии, Канаде. Карусельный лопастный ветродвигатель наиболее простой в эксплуатации. Его конструкция обеспечивает максимальный момент при запуске ветродвигателя и автоматическое саморегулирование максимальной скорости обращения в процессе работы. С увеличением погрузки уменьшается скорость обращения (вращающий момент возрастает) вплоть до полной остановки. Ортогональные ветродвигатели Ортогональные ветроагрегаты, по мнению специалистов, перспективны для большой энергетики. Сегодня перед приверженцами ортогональных конструкций возникают определенные трудности. Одна из них, в частности, проблема запуска. В ортогональных установках используется один и тот же профиль крыла, что и в дозвуковом самолете. Самолет, прежде чем опереться на подъемную силу крыла, должен разбежаться. Та же проблема возникает и в случае с ортогональной установкой. Сначала к ней нужно подвести энергию - раскрутить и привести к определенным аэродинамическим параметрам, а уже потом она самая перейдет из режима двигателя в режим генератора. Отбор мощности начинается при скорости ветра приблизительно 5 м/с, а номинальная мощность достигается при скорости 14...16 м/с. Предварительные расчеты ветроустановок предусматривают их использование в диапазоне от 50 до 20 тыс. квт. В реальной установке мощностью 2 тыс. квт диаметр кольца, по которому двигаются крылья, составит около 80 метров. У мощного ветродвигателя большие размеры. Однако можно обойтись и малыми - взять числом, а не размером. Если обеспечить каждый электрогенератор отдельным преобразователем, можно получить суммарную исходную мощность, вырабатываемую генераторами. В этом случае повышается надежность и живучесть ветроустановки.
Альтернативная энергетика в сша. Как. Проблемы развития энергетики мос. Ділова спільнота вітає відновлен. Сша профинансируют энергонезавис. Главная -> Экология |