Главная -> Экология
Способы переработки биомассы. Переработка и вывоз строительного мусораСолнечная энергия относится к возобновляемым видам энергии. Она с давних пор используется человеком. В последнее время в связи с обострением проблем экономии энергоресурсов и защиты окружающей среды интерес к ее использованию резко возрос. Солнечная энергия может быть превращена в механическую, электрическую и тепловую энергию, использованная в химических и биологических процессах. Солнечные установки находят широкое применение в системах отопления и охлаждение домов, получение горячей и опреснение морской воды, сушение материалов и сельскохозяйственных продуктов. Серьезное внимание следует уделять установкам солнечного горячего водоснабжения, поскольку их легко построить и применять в личном подсобном хозяйстве. Специалистами HUD и AIA (США) по уровню использования ресурсов окружающей среды выделяются несколько типов жилых домов: энергетически эффективный дом, теплопотери которого сведены к минимуму за счет выбора оптимального объемно-планировочного решения и усиленной теплоизоляции; энергетически эффективный дом с усиленным поглощением солнечной радиации, но без устройств для аккумулирования полученного тепла; дом с минимальными энергопотерями, который имеет специальные системы поглощения, распределения и аккумулирования тепла (солнечный дом). Соответственно рекомендациям HUD и AIA, к первому типу относятся все вновь спроектированные дома, так как этого требует новый экологический подход к проектированию жилой среды. Дома второго типа эффективно функционируют во всех районах США, хотя и требуют некоторого увеличения стоимости строительства. Дома третьего типа целесообразно строить в благоприятных климатических условиях, так как применяемые в них технологические устройства значительно удорожают строительство. Первым этапом проектирования солнечного дома считается выбор оптимальной формы дома. Как правило, рекомендуется компактная, близкая к квадрату форма плана с минимальным периметром внешних стен. Показателем компактности служит коэффициент, который равен отношению площади внешних стен к внутреннему объему дома. Для уменьшения поверхности внешних стен могут использоваться цилиндрические, полусферические и другие нетрадиционные формы. Для уменьшения энергопотребления пересматриваются много нормативов проектирования оградительных элементов дома, усиливаются их теплоизолирующие свойства путем применения более совершенных изоляционных материалов, ликвидации инфильтрации и продувка через дверные и оконные проёмы, применение двухкамерних стеклопакетов в холодных районах. Большой эффект дает дифференциация помещений по энергопотребностям и режимам эксплуатации. Слабоотаплеваемые помещения (шкафы, амбары, санузлы, гаражи и др.) рекомендуется размещать вдоль северной стены как буферные элементы. Особое значение при проектировании солнечного дома приобретают планирование участка и правильная ориентация. Для эффективного использования солнечной радиации южная стена или кровля жилого дома должны облучаться прямыми солнечными лучами с 9.00 до 15.00 даже в самый неблагоприятный день. Для этого солнцепринимаемый фасад должен быть ориентирован на юг с отклонением не более чем на 10-20o. В тесной городской застройке возникает юридическая проблема защиты южных фасадов солнечных домов от затемнения. В летнее время в большинстве районов необходима усиленная природная вентиляция дома для защиты от перегрева. Ориентировочный воздухообмен, который рекомендуется, в солнечном доме составляет 0,5 от общего объема дома в час. Хорошая организация воздушных потоков в доме служит основой распространения полученного тепла по помещениям за счет естественной конвекции. Это достигается созданием вертикальных воздушных потоков в двухсветовых пространствах атриумов, холлов, повышенных частях жилых комнат. По способу преобразования солнечной энергии наиболее распространено распределение солнечных систем на пассивные и активные. Их подробная характеристика отвечает принятым в отечественной литературе классификациям. Пассивные системы используют модификацию традиционных элементов дома для накопления и распределения тепла. Они требуют незначительного дополнительного оборудования и потому более экономичные, хотя и недостаточно продуктивные. Для их эксплуатации не нужно специального обслуживающего персонала. Активные системы, даже простейшие, включают значительный арсенал технических средств (плоские водные и воздушные коллекторы, специальные аккумуляторы тепла, системы распределения тепла и контроля за теплопоступлением), что удорожает строительство и требует квалифицированного монтажа. В реальной практике мы обычно встречаемся с комбинацией разных систем и планировочных приемов. Обращенное на юг окно в соединении с тепловой массой дома и изолирующими ставнями есть потенциально простейшей и в то же время наиболее удобной системой солнечного отопления. Также не тяжёлыми являются термосифонные воздушные коллекторы или солнечные водонагреватели. В ту же категорию попадают Скайтерм Гарольда Хея, стена из цилиндров Стива Баера и бетонная стена Тромба-Мишеля. Простые системы необязательно являются наиболее эффективными (хотя, нередко они довольно эффективны), но целиком вероятно, что при продолжительному сроке службы они требуют меньшей затраты строительных материалов и меньше энергии для своего сведения, эксплуатации и ремонта. Кроме вышеприведенных примеров простейшая система солнечного отопления использует коллекторы, которые работают только во время солнечного сияния и если дом имеет потребность в тепле. Такие коллекторы можно на зиму устанавливать на открытых площадках возле дома, а летом демонтировать. Их можно прикреплять к стенам и крышам существующих домов. В любом случае воздух из домов подается в коллектор, нагревается солнечными лучами и потом поступает снова у помещения. Вентилятор включается по сигналу разности двух температур (в помещении и на улице). В процессе работы системы датчик, который посылает этот сигнал, определяет, светит ли солнце и достаточно ли нагрет коллектор, чтобы нагреть воздух до нужной температуры; второй прибор определяет, имеет ли помещение потребность в тепле или нет. Этот чувствительный прибор должен быть настроен на верхнюю часть термостата, поскольку солнечное тепло с воздухом должно поступать в помещения тогда, когда его температура достигнет такого уровня, чтобы воспользоваться преимуществом использования энергии солнца, если оно светит (естественно, этот процесс может осуществляться вручную путем простого включения или выключения вентилятора). Поскольку в этом режиме работы не предполагается аккумулятор тепла для его дальнейшего использования, то дом должен действовать как контейнер теплоакумулятора. Таким образом, он должен нагреваться до такой температуры, которую могут выдержать люди, которые находятся в нем. Чем массивнее дом, тем больше тепла он может запасать, тем дольше он может обходиться без тепла после захода солнца или появления облачности, и тем выше будет общий КПД этой простой системы. Покрытые землей подземные сооружения с изоляцией, которая находится между бетоном и грунтом, очень близки к этим простым системам, поскольку массивные бетонные конструкции хорошо аккумулируют тепло. Система следующего уровня сложности накапливает солнечное тепло в теплоаккумуляторе. Если помещение имеет потребность в тепле, хотя солнечная энергия в дом и поступает, то включается отопительная система, которая накопила тепло. Однако в идеале поступление солнечного тепла через окна должно удовлетворить потребности в отоплении и во время работы коллектора. Дублирующая отопительная система совсем отделена от системы сбора и распределения солнечного тепла с целью упрощения всего комплекса. Если солнца нет и аккумулятор заряжен , потребность дома в тепле удовлетворяется в первую очередь за счет солнечного аккумулятора. Если этого недостаточно, то включается дублирующая система отопления. Типологические исследования американских специалистов позволяют объединить все виды пассивного энергообеспечения в 3 основные группы: прямой обогрев помещений через разные типы застеклений южного фасада: витражи и окна, фонари верхнего света, вертикальные окна, расположенные в верхней части двухосвещаемого пространства и т.д. (direct gain); нагревание внешнего термального массива типа стены Тромба (indirect gain); нагревание изолированного объема, теплый воздух от которого потом распространяется по всему дому (isolated gain). Прямой обогрев - наиболее простой, исторически сформированный вид солнечного отопления. Он требует ориентации основных помещений на юг. Излишки тепла аккумулируются внутренним термальным массивом: кирпичными или каменными полами, внутренними стенами, каминами, ёмкостями с водой или другими жидкостями. Оптимальное расположение массива - в зоне непосредственной радиации, которая в несколько раз увеличивает его аккумулирующую способность. Отсюда необыкновенное расположение каминов и просто массивных элементов: непосредственно в структуре витража, сразу за застеклением. Ориентировочно рекомендуется на 1 м2 застекления иметь 1 м3 термального массива с высокой теплопоглощающей способностью. Необходимым элементом в солнечных системах этого типа является надёжная система теплоизоляции и сонцезащиты помещений. Для этого используются стационарные или передвижные жалюзи, зашторивания, специальные занавесы, свесы кровель и др. Нагревание внешнего термального массива широко используется в жилых домах с пассивными солнечными системами. Наиболее известный вариант этого массива - так называемая стена Тромба, которая представляет собой бетонную, кирпичную или каменную стену, расположенную на южном фасаде и выкрашенную в темный цвет. На небольшом расстоянии от стены выполняется стеклянная облицовка. Теплоносителем является воздух, который нагревается в прослойке между стеной и облицовкой и в свою очередь нагревает стену, которая постепенно излучает полученное тепло в помещении. Таким образом, в этой конструкции соединяются функции коллектора и аккумулятора. Для циркуляции воздуха используются специальные клапаны. Нагревание изолированного застекленного объема практически является модификацией прямого обогрева, но в американской специальной литературе выделяется особенно в силу чрезвычайной распространенности этого приема. Застекленный объем теплицы, атриума, оранжереи может примыкать к южному фасаду дома, или встраиваться у него. Воздух, который нагревается в теплице, распространяется по другим помещениям путем естественной конвекции или по каналам с механическим нагнетанием и простой системой датчиков. Обычно это термостат, который регулирует открытие клапана, если температура воздуха в теплице достигает необходимой. Аккумулирование тепла осуществляется внутренним термальным массивом, аналогичным выше описанному. Помещение теплицы или атриума может быть целиком изолировано от дома. При правильной организации режима эксплуатации оно может использоваться для потребностей семьи. Можно считать атриум (зимний сад) важнейшим элементом солнечного дома, который служит буферной зоной между интерьером и внешней средой. Отопление домов с помощью пристроенных оранжерей широко используется при реконструкции жилых домов, даже многоквартирных, в особенности для семей с низкой прибылью. Обслуживание пассивных систем в малоэтажном жилом доме должно быть очень простым, так как часто владельцы не в состоянии справиться со сложными устройствами. По мнению американских специалистов, владелец должен тратить на это не более 15 минут в день (открыть и закрыть жалюзи, поднять рулонную теплоизоляцию, открыть или закрыть вентиляционное отверстие). Тем не менее, опросы, проведенные ASES, показывают, что много домовладельцев даже это считают для себя обременительным, несмотря на предлагаемые государством дотации. При детальном проектировании домов (ориентация, инсоляция и т.д.) должны также учитываться по возможности энергетические требования. Солнечные дома необходимо проектировать очень тщательно, и этот принцип должен придерживаться в мелких деталях. Вот основные правила, которых следует всегда придерживаться: строить с учетом климата и изучать природные условия; проект, который не учитывает сохранение энергии, в большинстве случаев не имеет успеха и всегда неэкономичный; красивая инсоляция всего дома обеспечивает снижение его энергетических потребностей; применять по возможности двухкамерные стеклопакеты; располагать отверстия и солнечные коллекторы с южной стороны и правильно *ориентировать дом; избегать затемнения южного фасада дома; учитывать взаимосвязь эстетических и технических сторон при проектировании солнечных коллекторов и аккумуляторов тепла; учитывать, что технически и конструктивно многоразовое использование энергии всегда находит применение в доме (отработанная вода, освещение и т.п.);
В зависимости от влажности биомасса перерабатывается термохимическими или биологическими способами. Биомасса с низкой влажностью (сельскохозяйственные и городские твердые отходы) перерабатываются термохимическими процессами: прямым сжиганием, газификацией пиролизом, ожижением, гидролизом. В результате получают водяной пар, электроэнергию, топливный газ, водород (метанол), жидкое топливо, газ, древесный уголь, глюкоза. Биомасса с высокой влажностью (сточные воды, бытовые отходы, продукты гидролиза органических остатков) перерабатываются биологическими процессами: анаэробная переработка, этанольная ферментация, ацетонобутанольная ферментация. В результате этих процессов получают биогаз (СН4, СО2), органические кислоты, этанол, ацетон, бутанол. Различие физико-химических свойств биомассы обусловливает выбор термохимического или биологического процесса ее переработки. Прямое сжигание является одним из самых широко применяемых методов переработки биомассы (древесины и древесных отходов, соломы, городских твердых отходов и др.). Топливо, вырабатываемое из городских твердых отходов, используют в сочетании с углем на небольших электростанциях. В процессе биологической переработки биомассы для роста и метаболизма бактериям необходимы питательные вещества (азот и фосфор). Для биологической переработки почти всех видов биомасс требуется дополнительное введение питательных веществ. Наиболее перспективными и все более широко применяемыми процессами превращения биомассы в различные виды энергии являются термохимическая газификация, этанольная ферментация и анаэробная переработка. Из термохимических процессов переработки биомассы наибольшее внимание в настоящее время привлекают такие, как газификация, пиролиз и сжижение, в результате которых получают жидкие и газообразные топлива, имеющие значительно большую энергоемкость, чем биомасса. Все эти процессы протекают при высокой температуре, а иногда и при высоком давлении. Газификация древесины и другого лигноцеллюлозного сырья в течение многих лет является одним из основных методов производства низкокалорийного топливного газа. Топливный газ может быть непосредственно использован в котельных, обжигательных печах и разного вида топках, а после охлаждения, очистки и осушки - в качестве топлива в двигателях внутреннего сгорания. Состав получаемых при газификации газов зависит от природы применяемого сырья, типа окислителя, температуры процесса и давления. Наибольшую ценность представляет среднекалорийный газ, особенно синтез-газ (в основном состоящий из СО и Н2). При газификации древесины получают синтез-газ, который по составу идентичен синтез-газу, вырабатываемому газификацией угля, паровой конверсией природного газа и др. Пиролиз биомассы осуществляется при ее нагревании в отсутствии кислорода с образованием жидкого топлива, газов и древесного угля. Выход продуктов пиролиза зависит от условий проведения процесса и типа сырья. В свою очередь, условия процесса определяются природой сырья, заданными продуктами производства. Широкую известность получил процесс превращения биомассы в жидкое топливо пиролизом со ступенчатым испарением, где в качестве сырья используются твердые городские отходы, древесная кора и др. Основными технологическими узлами установки являются отделения для предварительной обработки древесины, производства синтез-газа, реакторное и секция для разделения продуктов ожижения. В отделении для предварительной обработки древесины биомасса (в виде древесной щепы) высушивается, измельчается и смешивается с рециркулирующей частью производимого жидкого топлива. Полученная суспензия нагревается до 200oС и под давлением 23 Мпа подается в реактор, где в присутствии раствора углекислого натрия в качестве катализатора и смеси газов оксида углерода и водорода (поступающего из отделения производства синтез-газа после очистки последнего от СО2 и Н2О) при температуре 340оС и давлении 23МПа происходит ожижение биомассы. Неочищенная жидкая фракция содержит, кроме образовавшегося жидкого топлива, непрореагировавшую древесину, катализатор и нерастворимые твердые вещества, для очистки от которых она направляется в сепараторное отделение. Извлеченные из неочищенного жидкого топлива твердые вещества и водорастворимый катализатор возвращают в систему. Общий тепловой КПД промышленной установки (с учетом всех потерь) составляет 50-60 %. Один из методов переработки целлюлозной биомассы (например, соломы) - гидролиз минеральными кислотами с образованием глюкозы и ксилозы, которые в дальнейшем могут быть подвергнуты ферментации в целях производства различных органических химикатов, включая этанол, кислоты, бутанол и ацетон. С точки зрения получения заменителей жидкого и газообразного ископаемого топлива наибольший интерес представляет технология переработки биомассы с образованием в качестве конечных продуктов этанола, метанола, синтетического природного газа и биогаза. Из биологических методов превращения биомассы наибольшее распространение получают анаэробная переработка и этанольная ферментация. В процессе анаэробной переработки или перегнивання (метановая ферментация) органические вещества разлагаются до СО2 и CH4. Возможность получения высококалорийного ,топливного газа (СН4) путем биохимической переработки биомассы, частности экскрементов крупного рогатого скота, реализована сравнительно недавно. Процесс анаэробной переработки органических отходов происходит в отсутствии кислорода с участием различных групп бактерий. Основными преимуществами превращения биомассы методом термохимической газификации являются высокие эффективность и скорость превращения. К недостаткам процесса относится возможность переработки сырья только с низким содержанием влаги, а также высокие температура и давление, сложные техническое оформление и управление процессом. Одним из способов переработки биомассы является ацетонобутанольная ферментация, в результате которой под действием микроорганизма образуется уксусная и масляная кислота, этанол, бутанол, ацетон, изопропанол, а также диоксид углерода и водород.
Гоэлро. Ебрр поддерживает инвестиции в сферуэффективного использования энергии вукраине. Ебрр принял новую стратегиюдеятельности в украине. Новая страница 1. Осада замкнутого круга. Главная -> Экология |