Главная ->  Экология 

 

Дом. Переработка и вывоз строительного мусора


Системы вытесняющей вентиляции (Displacement Ventilation, DV, и их модификации – Cooled Beam, UFAD и т. п.) продолжают интересовать специалистов отрасли у нас в стране и за рубежом. Этот интерес определяется двумя причинами: одна из них – определенная «нетрадиционность» методов их расчета; вторая состоит в том, что область применения DV, методы их проектирования и регулирования до настоящего времени четко не определены.
В нашем журнале в 2001–2002 годах был опубликован ряд статей (см. «Системы вытесняющей вентиляции для промышленных зданий. Типы, область применения, принципы проектирования», «АВОК», 2001, № 5, с. 36–46; «Системы вентиляции с воздухораспределителями в полу / Опыт применения», «АВОК», 2002, № 6, с. 40–42; «Системы вентиляции с воздухораспределителями в полу / Температурная стратификация», «АВОК», 2002, № 6, с. 44–50) с редакционными комментариями, в которых достаточно подробно рассмотрены физические процессы, лежащие в основе формирования распределения воздушных и тепловых потоков в помещениях, принципы расчета, возможная область применения, достоинства и недостатки системы и т. п.
Данные публикации не содержали конкретных сведений, позволяющих инженеру-проектировщику выполнить необходимые расчеты и подобрать оборудование. Фирмы-производители воздухораспределителей для вытесняющей вентиляции, например «Trox», «Halton» и др., предлагают в своих каталогах определенную информацию о DV, однако ее недостаточно для проектирования систем.
В 2002 году Федерация Европейских ассоциаций в области отопления, вентиляции и кондиционирования воздуха (REHVA) начала подготовку серии справочников (REHVA Guidebook) по актуальным вопросам специальности. Первым изданием из серии был справочник «Вытесняющая вентиляция в непроизводственных зданиях» («Displacement Ventilation in Non-Industrial Premises»).
Авторы-составители справочника – Haokon Skistad (ред.), Elisabeth Mundt, Peter V. Nielsen, Kim Hagstrom, Jorma Railio – известные специалисты из скандинавских стран, где еще в 1980-х годах началось применение систем вытесняющей вентиляции и были разработаны первые конструкции воздухораспределителей.
НП «АВОК» получило право на перевод, издание и адаптацию справочника для российских условий. Ожидается, что российское издание справочника «Вытесняющая вентиляция в непроизводственных зданиях» будет подготовлено в 2003 году.
Справочник состоит из следующих основных разделов:
1. Общий обзор вытесняющей вентиляции.
2. Терминология, символы и единицы.
3. Основные сведения о вытесняющей вентиляции, в том числе:
- принципы организации воздухообмена;
- распределение температуры воздуха по высоте вентилируемых помещений и практические рекомендации по его определению;
- сведения о конвективных потоках над источниками тепла;
- распределение загрязняющих веществ в помещении;
- эффективность вытесняющей вентиляции;
- отопление помещений.
4. Воздухораспределители для вытесняющей вентиляции.
5. Проектирование систем вытесняющей вентиляции.
6. Энергоэффективность вытесняющей вентиляции.
7. Системы автоматики и управления.
8. Примеры расчета и проектирования вытесняющей вентиляции в ресторане, офисе, зале заседаний, аудитории, классе.

 

Ниже представлена подробная аннотация справочника «Вытесняющая вентиляция в непроизводственных зданиях», подготовленная по материалам доклада его редактора Хакона Скистада (Haokon Skistad) на 43-м международном симпозиуме AICARR («Качество среды и технологические решения»), Милан, 7–8 марта 2002 года.

 

Е. О. Шилькрот, вице-президент НП «АВОК»

 

Основные принципы вытесняющей вентиляции

 

В системах вытесняющей вентиляции (DV) приточный воздух подается с уровня пола непосредственно в обслуживаемую зону помещения, при этом его температура должна быть ниже температуры воздуха в помещении (DТ=1–8 °C). Если приточный воздух холоднее воздуха помещения более чем на 3 °C, то его следует смешивать с воздухом помещения, чтобы избежать неприятных ощущений для людей от холодных воздушных потоков на уровне пола. Удаление нагретого загрязненного воздуха, вытесняемого в верхнюю зону в конвективных потоках над тепловыми источниками, происходит на уровне потолка помещения.
Для обеспечения устойчивой вытесняющей вентиляции объемы подаваемого воздуха (qs) должны равняться сумме объемов воздуха в конвективных потоках над тепловыми источниками на уровне границы раздела, уровня стратификации, нижней зоны помещения, заполненной свежим и чистым воздухом, и верхней зоны, заполненной загрязненным воздухом (рис. 1):

 

qs=qe=qp,1+qp,2+qp,3 (1)
Рис. 1. )
Воздушные потоки в помещении с вытесняющей вентиляцией (qs, qe, qoz – температура приточного воздуха, температура удаляемого воздуха и температура воздуха в обслуживаемой зоне соответственно) Рис. 2. )
Схемы подачи воздуха

 

Воздухораспределители

 

Приточный воздух подается в помещение через воздухораспределители, расположенные на уровне пола либо встроенные непосредственно в пол. На рис. 2 представлены типовые схемы организации подачи воздуха.
В театрально-концертных залах воздух зачастую подается из-под кресел (рис. 3). Такое решение хорошо себя зарекомендовало, однако на практике оно требует особого внимания в части предотвращения неприятных холодных потоков на уровне щиколоток. НЕКОТОРЫЕ ПОЯСНЕНИЯ Принцип работы системы вытесняющей вентиляции, в основу которого положен приток воздуха в обслуживаемую зону и удаление воздуха и горячих газов на уровне потолка, известен и применяется уже сотни лет на промышленных объектах, главным образом на объектах тяжелой промышленности.
Одним из первых научных исследований в области изучения данного принципа вентиляции считается работа Батурина 1940 года. С начала 80-х годов прошлого столетия системы вытесняющей вентиляции стали широко и довольно успешно применяться в скандинавских странах в административных помещениях и конференц-залах.
В последние 20 лет системы вытесняющей вентиляции стали использоваться еще шире, причем не только в промышленности. К несчастью, многие разработчики не придавали должного значения ограничениям, которые имеются у данных систем. В результате они зачастую применялись с проектными ошибками, а иногда и в таких случаях, когда их использование просто-напросто противопоказано. И наоборот, когда система корректно рассчитана, спроектирована и смонтирована, она имеет целый ряд бесспорных преимуществ по сравнению с системой перемешивающей вентиляции, особенно в помещениях с высокими потолками. ОБОЗНАЧЕНИЯ с – концентрация загрязняющих веществ, мг/м3, ppm
ce – концентрация загрязняющих веществ на вытяжке, мг/м3, ppm
cexp – концентрация загрязняющих веществ во вдыхаемом воздухе, мг/м3, ppm
coz – концентрация загрязняющих веществ на обслуживаемом участке (на высоте 1,1 м от уровня пола), мг/м3, ppm
cs – концентрация загрязняющих веществ на подаче, мг/м3, ppm
qe – объем отводимого воздуха, л/с
qs – объем подаваемого воздуха, л/с
qp – объем воздуха, генерируемый тепловым шлейфом, л/с
z – высота потолков в помещении, м
qe – температура воздуха на вытяжке, °C
qoz – температура воздуха на обслуживаемом участке, °C
qs – температура воздуха на подаче, °C

 

Вытесняющая вентиляция и качество воздуха

 

Основное преимущество вытесняющей вентиляции – существенное повышение качества воздуха. При неизменных объемах вентиляционного воздуха и эмиссии загрязняющих веществ и равных прочих условиях качество воздуха в обслуживаемой зоне будет лучше, если в помещении используется вытесняющая вентиляция, а не традиционная перемешивающая (MV) (рис. 4). Преимущества определяются высотой стратификации загрязненного воздуха. Рис. 3.
Подача воздуха из-под кресел в театрально-концертных залах

 

Рис. 4. )
Качество воздуха в помещениях, оборудованных системами вытесняющей и перемешивающей вентиляции при равных воздухообменах и эмиссии загрязняющих веществ Рис. 5. )
Достаточный (слева) и недостаточный (справа) воздухообмен для поддержания уровня стратификации выше головы человека

 

Рис. 6.
Конвективный поток от человека способствует повышению качества вдыхаемого воздуха

 

Достаточно большие объемы вентиляционного воздуха гарантируют распределение воздуха, представленное на рис. 5 слева. Эксперименты, проведенные Сандбергом (Sandberg) и Этериджем (Etheridge), показали, что конвективный поток, формирующийся человеком, может вызвать приток чистого свежего воздуха до высоты вдыхания воздуха (рис. 6).
Лабораторные испытания дают основания утверждать, что объемы вентиляционного воздуха порядка 10 л/с на человека, подающиеся непосредственно в обслуживаемую зону помещения, дают улучшение качества воздуха, аналогичное тому качеству, которое перемешивающая вентиляция обеспечивает при воздухообмене 20 л/с на человека. Эти данные получены в лабораторных исследованиях и в условиях практической деятельности пока не проверялись.

 

Вытесняющая вентиляция в
помещениях с избытками тепла

 

На рис. 7 представлена типичная схема распределения температуры в помещениях с вытесняющей и перемешивающей системами вентиляции. Особенность вытесняющей вентиляции состоит в том, что температура повышается от пола к потолку. Особо следует подчеркнуть, что температура воздуха на уровне пола выше температуры его поверхности, что обусловлено перемешиванием приточного воздуха с воздухом помещения и радиационным теплообменом между потолком и полом.
Вертикальный градиент температуры воздуха в помещении не должен превышать 1,5–2 °C (рис. 8), что фактически ограничивает разность температур между зоной обслуживания, нижней зоной и верхней зоной вытяжки. При определенной температуре воздуха в обслуживаемой зоне температура приточного воздуха (при вытесняющей вентиляции) не может быть низкой, как это происходит в системах перемешивающей вентиляции. В помещениях с потолками высотой около 2,4 м разность температур составляет примерно 2 °C. В помещениях с более высокими потолками это значение может повышаться. В примере, показанном на рис. 9, эта разница составляет 4,5 °C. Рис. 7. )
Вертикальный градиент температуры воздуха в помещениях с вытесняющей и перемешивающей системами вентиляции при равных воздухообменах и тепловой нагрузке Рис. 8. )
Ограничение разности температур между зоной обслуживания и верхней зоной вертикальным градиентом температур Рис. 9. )
Схема температурного распределения в помещении с высокими потолками – сравнительные характеристики вытесняющей и перемешивающей систем вентиляции Рис. 10. )
Театрально-концертный зал с системой вытесняющей вентиляции и рециркуляцией воздуха

 

Поскольку вытесняющая вентиляция обуславливает более низкую температуру воздуха в обслуживаемой зоне при определенной фиксированной температуре приточного воздуха, имеется возможность на протяжении практически всего года пользоваться естественным охлаждением, или, иначе говоря, охлаждением наружным воздухом. Кроме того, температура воздуха в обслуживаемой зоне может быть ниже, чем при перемешивающей вентиляции.
Поскольку в системе вытесняющей вентиляции холодный приточный воздух подается непосредственно в обслуживаемую зону, необходимо использовать воздухораспределители, которые обеспечивали бы необходимое перемешивание приточного воздуха с воздухом помещения. Ошибка с выбором приточной системы неизбежно влечет за собой проблемы холодных воздушных потоков, создающих дискомфорт для людей.
Зачастую оказывается, что объемы воздуха, необходимые для обеспечения теплового комфорта, значительно больше, чем требуется для получения максимальных преимуществ по качеству воздуха в системах вытесняющей вентиляции (от 10 до 20 л/с на человека). В этом случае экономически целесообразным решением, по сравнению с прямоточными системами, может стать рециркуляция (рис. 10). Предположим, что объем вентиляционного воздуха составляет 10 л/с на человека, при этом 40 % этого воздуха идет по рециркуляции. В этом случае концентрация СО2 в зоне дыхания составит примерно 900 ppm, тогда как в помещении с перемешивающей системой вентиляции она поднимется до 1 350 ppm [2]. Таким образом, система вытесняющей вентиляции дает ощутимые преимущества и в плане качества воздуха, и в плане экономии энергоресурсов по кондиционированию помещений.

 

Охлаждаемые потолки
и система кондиционирования воздуха

 

Охлаждаемые потолки в сочетании с системой вытесняющей вентиляции могут оказаться даже более полезными, чем задумывали проектировщики. При этом стратификация воздуха в помещении не нарушается. Показано, что в помещении, где охлаждаемые потолки сочетаются с вытесняющей вентиляцией, до 50 % общей тепловой нагрузки может сниматься с потолка. Увеличение нагрузки, снимаемой с потолка, вызывает интенсификацию нисходящих воздушных потоков и нежелательное расширение зоны перемешивания воздуха, что практически сводит к нулю эффект вытесняющей вентиляции. Вопрос, какую вентиляционную систему предпочесть для помещений высотой от 2,5 до 3 м, где основной вредностью являются тепловыделения, представляется достаточно спорным. Несомненно, однако, что для помещений с высокими потолками предпочтительной является система вытесняющей вентиляции.

 

Вытесняющая вентиляция
и отопление помещений

 

Когда речь идет о вытесняющей вентиляции, считается за правило, что вентиляционный воздух не может использоваться в целях отопления. Обычно тепло обеспечивается радиаторами, располагающимися под окнами либо на наружной стене. В качестве альтернативы может рассматриваться применение теплого пола: в этом случае температура пола достаточно низкая, чтобы приточный воздух растекался по нему, не сильно нагреваясь. Рис. 11. )
Температурный режим помещения при изменении тепловой нагрузки охлаждаемого потолка Рис. 12. )
Движение воздуха перед воздухораспределителем – подача холодного воздуха

 

Подача воздуха

 

Как уже отмечалось, одна из основных проблем вытесняющей вентиляции – наличие характерных потоков холодного воздуха вблизи воздухораспределителей. Главная причина – неправильный их подбор. В этой связи представляется целесообразным подчеркнуть следующие обстоятельства:
- Проблемы потоков холодного воздуха чаще всего возникают у воздухораспределителей, представляющих собой перфорированные пластины и разного рода решетки.
- Воздухораспределители различного назначения имеют разные аэродинамические характеристики.
- «Хороший» воздухораспределитель, предназначенный для подачи приточного воздуха с DТ=4–10 °C , обеспечивает хорошее перемешивание приточного воздуха с воздухом помещения и имеет ограниченную зону температурного дискомфорта.
- «Хороший» воздухораспределитель, предназначенный для подачи приточного воздуха с DТ=0,5–2 °C, обеспечивает незначительное перемешивание приточного воздуха с воздухом помещения.
Таким образом, для обеспечения корректной работы вентиляционной системы с оптимальными рабочими и эксплуатационными характеристиками следует использовать воздухораспределители, предназначенные именно для данного вида помещений и имеющие подробную техническую документацию изготовителя.

 

Подача в помещение
холодного воздуха

 

Когда воздух, подаваемый в помещение, холоднее воздуха помещения, он скользит по полу стратифицированным потоком, имеющим примерно одинаковую толщину, как правило, около 20 см. Максимальная скорость движения наблюдается на высоте примерно 2 см от пола (рис. 12). Перед воздухораспределителем образуется зона, для которой характерны высокая скорость и низкая температура. В такой зоне люди могут испытывать определенный дискомфорт на уровне щиколоток, обусловленный движением холодных потоков. Оптимальный побор воздухораспределителей должен свести к минимуму площадь такой зоны (рис. 13). Важно подчеркнуть, что низкоскоростной воздухораспределитель – это не просто перфорированная пластина. Он имеет определенные параметры подачи воздуха. И лучше, если он будет изготовлен фирмой с надежной репутацией. Рис. 13.
Зона, где могут возникать холодные воздушные
потоки, разные типы воздухораспределителей

 

Рис. 14. )
Движение воздуха перед воздухораспределителем – подача изотермического и нагретого воздуха

 

Подача изотермического
или нагретого воздуха

 

При подаче изотермического приточного воздуха его движение происходит по горизонтали вглубь помещения. А при подаче нагретого воздуха он поднимается вверх к потолку (рис. 14). Таким образом, очевидно, что система вытесняющей вентиляции эффективна только тогда, когда приточный воздух холоднее воздуха в помещении.

 

 

В разделе Дом - солнечный коллектор рассматривались методы регулирования естественного поступления в здание и использования тепловой энергии солнечного излучения без помощи солнечного коллектора. В следующем разделе Дом - аккумулятор солнечной энергии предполагалось, что солнечные лучи имеют возможность проникать в здание, в котором солнечная энергия аккумулируется в виде тепла для дальнейшего использования. Если здание проектируется с учетом аккумулирования с целью его дальнейшего использования, то в конструкции здания должны быть предусмотрены меры по предотвращению или, по крайней мере, снижению утечки тепла.

 

Помимо использования солнечной энергии для экономии других видов энергии существует множество проектных решений, которые способствуют экономии энергии в зданиях. Рассмотрение и использование этих вариантов во многом имеет большее значение, чем мероприятия по использованию солнечной энергии в качестве решения проблемы энергетического дефицита, т.к. часто потребляется значительно больше энергии, чем это необходимо. Поэтому прежде, чем обратиться к другим источникам энергии, следует сначала снизить уровень потребляемой энергии.

 

Основные способы сохранения тепла в здании заключаются в выборе:
формы здания;
изоляции;
типов окон и дверей;
ставней на окнах;
уменьшении инфильтрации воздуха;
защите от ветра и регенерации тепла.

 

Между мероприятиями по экономии энергии в строительном проектировании и использованием солнечной энергии для отопления и охлаждения существует прямая связь. При уменьшении нагрузки на теплоснабжение уменьшается и полезный размер здания, а также необходимый размер солнечной отопительной установки независимо от того, используются ли приток солнечного тепла через окна и тепловая масса здания или солнечная установка представляет собой только пристройку к зданиям с насосами, вентиляторами, теплообменниками и теплоаккумулятором. Благодаря меньшей мощности солнечной установки снижается не только первоначальная стоимость здания, но уменьшаются также энергетические затраты в целом, поскольку потребность в отоплении и охлаждении становится меньше.

 

Кроме уменьшения мощности системы солнечного отопления, можно уменьшить и другие составляющие баланса экономии энергии. При снижении отопительной нагрузки или нагрузки на кондиционирование можно уменьшить объем вспомогательного оборудования, дублирующего солнечную установку. Уменьшение мощности этого оборудования означает соответствующее уменьшение размеров (и стоимости) отопительных труб, электропроводки для оборудования и размеров газоходов. Длина каналов и труб также может быть меньше, поскольку они необязательно должны охватывать весь периметр здания, чтобы поддерживать комфортные условия в течение отопительного сезона.

 

Более компактное здание, в котором расходуется меньше энергии на отопление, обеспечивает более комфортную среду обитания. Изоляция уменьшает влияние холодных стен. Зимой внутренняя поверхность неизолированных стен на 5...8 градусов холоднее, чем поверхность изолированных стен. Изоляция повышает температуру внутренних поверхностей стен, и люди чувствуют себя более комфортно. Тело человека, находящегося в окружении холодных стен, пола и потолка, теряет тепло слишком быстро, и человек испытывает чувство холода и дискомфорта. Летом условия меняются, и излишне нагретые поверхности стен затрудняют поддержание необходимой для человека прохлады. Если температура внутренних поверхностей здания создаст в помещении дискомфорт, то люди включают термостат почти на полную мощность зимой, чтобы увеличить приток тепла, а летом ставят его на слабый режим, чтобы обеспечить прохладу. Это приводит к повышенному расходу энергии.

 

В более компактных зданиях обеспечивается более равномерное распределение температуры воздуха в помещениях и между полом и потолком. Воздух, омывающий холодные стены, охлаждается, его плотность увеличивается, и он опускается к полу. Происходит замещение теплого воздуха, который поднимается. Это постоянное движение воздуха (тяга) создает дискомфорт. Инфильтрации наружного воздуха через щели в ограждающих конструкциях здания также вызывает сквозняки, поэтому уменьшение инфильтрации повышает комфортность.

 

Дополнительная изоляция, призванная уменьшить потребление энергии, способствует, кроме того, созданию акустического барьера между зданием и внешней средой.

 

Существует много полезных альтернатив для уменьшения потребления энергии, использование которых не всегда оказывает существенное влияние на проект здания. Одним из основных способов, с помощью которого можно уменьшить потребление энергии, состоит в изменении нашего образа жизни (и методов эксплуатации здания), в том числе поддержание в доме более низких температур.

 

Шторы должны быть открыты в течение дня, чтобы пропускать солнечный свет в здание (разумеется, это не относится к окнам, обращенным на север); ночью шторы должны быть закрыты. Намного эффективнее штор внутренние изолирующие ставни, обеспечивающие плотное закрывание окон и, по сути дела, трансформирующие их в стену.

 

При открытии окон и дверей необходимо принять все меры, чтобы уменьшить количество холодного наружного воздуха, поступающего через проемы в зданиях. Уплотнение дверей, окон и других проемов может быть наилучшим методом экономии энергии.

 

Для того, чтобы оценить методы сохранения тепла внутри здания, нужно иметь представление о величинах, в которых измеряется количество теплоты (калория или джоуль), и градусо-днях.

 

градусо-день в некотором смысле сходно с измерением трудозатрат в человеко-днях. Работу, которую 1 человек выполняет за 1 день, можно определить в количестве 1 чел-дня. Аналогичным образом, если температура наружного воздуха на 1°С ниже температуры воздуха в здании в течение 1 дня, то отопительная нагрузка на здание может быть оценена в 1 град-день. В качестве базисной используется внутренняя температура 18,3°С. Если температура наружного воздуха выше 18,3°С, то число градусо-дней для этого дня принимается равным нулю. Значение температуры, по отношению к которому ведется отсчет градусо-дней, принято равным 18,3°С, а не 22°С в связи с тем, что внутренние источники тепла (печи, бытовые электрические приборы, осветительные приборы, тепловыделения людей и т.п.), а также солнечная радиация, поступающая через окна внутрь здания, как правило, обеспечивают повышение температуры с 18,3°С до комфортного уровня 22°С. Месячное число градусо-дней - это сумма градусо-дней, соответствующих каждому дню месяца. Многочисленные измерения расхода топлива показали, что месячная нагрузка отопления здания почти пропорциональна месячному числу градусо-дней, рассчитанному рассмотренным выше методом. Дополнительное преимущество использования понятия градусо-дней заключается в том, что с его помощью можно довольно просто определить количество энергии, которое потребляет здание в течение года.

 

Следует заметить, что эти расчеты наиболее верны для малых зданий, т.к. в крупных административных зданиях теплопоступления от внутренних источников тепла составляют значительно большую часть общих теплопоступлений.

 

Тепловые потери типичных жилых домов и других зданий происходят по трем основным причинам:
вследствие теплопроводности через стены, крыши и полы, а также вследствие (но в гораздо меньшей степени) излучения и конвекции;
вследствие теплопроводности и меньшей степени путем излучения и конвекции через окна и иное остекление;
путем конвекции и перетока воздуха через элементы наружного ограждения здания, который обычно происходит через открытые окна, двери и вентиляционные отверстия (принудительно или естественно) или путем инфильтрации, т.е. проникновения воздуха через щели в ограждающих конструкциях здания, например по периметру дверных и оконных рам.

 

В зависимости от того, имеет ли здание хорошую изоляцию или нет, много в нем окон или мало, наблюдается ли через него движение воздуха или нет, каждый из этих трех факторов составляет 20...50% общих тепловых потерь здания.

 

Предположим, что потери тепла в здании имеют место в равной мере по трем вышеуказанным факторам. Это графически иллюстрируется диаграммой в виде круга, разрезанного на 3 равных части. Если какую-либо одну из этих составных частей уменьшить вдвое, то общие тепловые потери уменьшатся только на 1/6 часть. Это говорит о том, что все три фактора следует рассматривать в равной мере, не выделяя тот или иной.

 

Рис. 1. Примерная структура тепловых потерь:
а - в обычном жилом доме;
б - в обычном жилом доме с усиленной теплоизоляцией;
1 - через окна - 33,3%; 2 - через стены, крышу, пол - 33,3%; 3 - из-за инфильтрации воздуха - 33,3%; 4 - через стены, крышу, пол - 20% (16,7% от первоначальных); 5 - из-за инфильтрации воздуха - 40% (33,3% от первоначальных); 6 - через окна - 40% (33,3% от первоначальных); 7 - сэкономлено за счет снижения потерь через стены, крышу, пол - 16,7% от первоначальных.

 

Рис. 2. Относительные уровни тепловых потерь для окон и стен различных типов:
1 - одинарное остекление; 2 - двойное остекление; 3 - тройное остекление; 4 - двойное остекление с теплоизолирующими ставнями; 5 - стена со стандартной изоляцией; 6 - стена с усиленной изоляцией.

 

Основные источники тепловых потерь здания почти невозможно рассматривать независимо друг от друга.

 

Разные типы остекления и конструкции стен существенно различаются по количеству проходящего через них тепла. Например, двойное остекление пропустит тепла вдвое меньше, чем одинарное, а стена с хорошей изоляцией - около 1/30 (около 4%) того количества тепла, которое проходит через одинарное остекление. Одинаковое количество тепла будет потеряно через хорошо изолированную стену 9х2,5 м и через окно с одинарным остеклением 1,2х0,6 м.

 

Применение изолирующих ставней для закрытия окон ночью значительно снижает теплопотери. Изолирующие ставни могут также эффективно снизить радиационные потери тепла и в зависимости от типа строительных конструкций почти полностью исключить фильтрацию воздуха. В зависимости от теплового сопротивления изолирующих ставней потери тепла вследствие теплопроводности через окно со ставнями можно уменьшить до 10 раз по сравнению с окном без ставней.

 

В качестве простого примера экономии в результате применения ставней сравним потери через окно вследствие теплопроводности и для случаев отсутствия ставней. Если ставни открыты только в течение дневных часов, т.е. 40...65% времени отопительного сезона, то благодаря ставням теплопотери будут существенно снижены в течение остальной части отопительного сезона. Если ставни закрыты 1/3 времени, то будет сэкономлено примерно 30% энергии. Если ставни закрыты половину времени, то будет сэкономлено примерно 60% энергии. Кроме того, существуют несколько факторов, способствующих повышению экономии. Например, ночью, когда ставни закрыты, наружная температура воздуха обычно ниже, чем днем. Радиационные потери тепла также наиболее значительны ночью. В течение дневных часов, когда ставни открыты, потери тепла существенно компенсируются поступлением через окна солнечного тепла. Поэтому значение ставней для экономии энергии велико, и их применению следует уделить самое серьезное внимание.

 

Тепловые потери за счет конвекции и перетока воздуха через проемы наружной оболочки здания могут составлять значительную часть общих потерь тепла. Эта составляющая потерь может быть особенно велика для таких зданий, как школы, больницы, зрительные залы, в которых требуются повышенные скорости вентиляции. В этих ситуациях все большее внимание должны заслуживать теплорегенерирующие устройства, передающие тепло от отработанного воздуха к поступающему. Летом приточный воздух охлаждается отработанным.

 

Небольшие вентиляторы, подобные применяемым в ванных комнатах и кухнях, являются причиной утечки меньшего, но все же существенного количества тепла. Следует отдавать предпочтение вентиляторным системам, которые фильтруют и циркулируют воздух, а не выбрасывают его наружу.

 

Рис. 3. Деталь конструкции, обеспечивающая дополнительные изоляционные свойства деревянной фахверковой стены:
1 - наружный отделочный слой; 2 - наружная обшивка; 3 - слой нанесенного набрызгом полиуретана (25 мм); 4 - стекловолокно со слоем фольги (50 мм); 5 - воздушный промежуток (12мм); 6 - пароизоляция (полиэтилен, 0,1 мм); 7 - внутренний отделочный слой.

 

Рис. 4. Стирофомная обшивка (25 мм) наружной стены обычной деревянной фахверковой конструкции:
1 - облицовка; 2 - штукатурка; 3 - теплоизоляция из войлока; 4 - обшивка из стирофома.

 

Рис. 5. Теплоизоляция фундамента и пола:
1, 2, 3, 4 - поступления и потери тепла через остекление; 5 - бетонный или кирпичный пол; 6 - песчаная, щебеночная или бетонная подготовка; 7 - жесткая конструкционная теплоизоляция; 8 - гидроизоляционный слой; 9 - земля.

 

Рис. 6. Теплоизоляция вокруг электрораспределительных коробок, выключателей и труб:
1 - войлочная теплоизоляция; 2 - электрораспределительная коробка; 3 - пароизоляция.

 

Рис. 7. Устройство теплоизоляции камина, примыкающего к наружной стене:
1 - подкаминная плита; 2 - огнеупорный кирпич; 3 - наружная стена; 4 - засыпная теплоизоляция (75 мм).

 

Рис. 8. Уменьшение потерь тепла через раздвижную стеклянную дверь при помощи стационарной рамы со стеклопакетом и двери с теплоизоляцией:
1 - изолирующее стекло; 2 - дверь с теплоизоляцией.

 

Рис. 9. Добавление второй рамы к окну уже имеющему стеклопакет (снижение тепловых потерь на 30...50%).

 

Другой причиной обмена между внутренним и наружным воздухом является открывание и закрывание окон и дверей. Чтобы уменьшить расход энергии на отопление и охлаждение, каждый дверной проем должен иметь две двери, которые при необходимости могут располагаться вплотную друг к другу. Например, вторая дверь может быть навешена рядом дополнительно к основной стандартной двери. Однако лучше отделять двери друг от друга тамбуром с тем, чтобы при открывании наружной двери внутренняя дверь оставалась закрытой. Таким образом, создается, по сути дела, декомпрессионная камера. Вращающиеся двери приемлемы в местах с интенсивным перемещением людей, а в сочетании с тамбурами такие двери являются хорошим средством экономии энергии.

 

Ветер является важным фактором в ежеминутном изменении количества воздуха, проникающего в здание. В книге Проектирование с учетом климата В. Олгиэй сообщает, что при скорости ветра 8 м/с тепловая нагрузка здания удваивается по сравнению с нагрузкой, рассчитанной при скорости ветра 2 м/с. При более высоких скоростях ветра весьма эффективной защитой здания является растительная изгородь. Экономия топлива может достигать 30% при хорошей защите здания с трех сторон. В северном полушарии обычно северная и западная стены здания открыты ветру. Поэтому здания должны ориентироваться так, чтобы не попадать под господствующие ветры, или должны иметь защитные экраны (природные растительные или искусственные) во избежание повышенной фильтрации воздуха по периметру дверей, окон и других проемов. Входы в здание не должны располагаться с северной и западной сторон. Если же они там расположены, то защита от ветра приобретает особое значение.

 

Рис. 10. Расположение естественных преград ветру для экономии тепловой энергии (для случая показанных направлений ветра):
1 - здание; 2 - господствующие летние ветры; 3 - зеленые (летние) насаждения; 4 - господствующие зимние ветры; 5 - вечнозеленые насаждения; 6 - зимние штормовые ветры.

 

Весьма важным при рассмотрении влияния перетоков воздуха в здании на расход энергии является учет проникновения воздуха через трещины и щели в стенах, крышах и окнах. Создание замкнутых воздушных промежутков в стенах зданий и плотная подгонка окон и дверей могут существенно уменьшить влияние инфильтрации воздуха. Инфильтрация воздуха через щели в ограждающих поверхностях здания является наиболее важным фактом, который следует учитывать при разработке мероприятий по защите от воздействия ветра. Определенное количество наружного воздуха необходимо людям для вентиляции и ощущения свежести, и естественное проникновение воздуха через щели иногда учитывается при расчете принудительной вентиляции. Тем не менее, все меры должны быть приняты, чтобы уменьшить такую неконтролируемую инфильтрацию воздуха. По мере снижения доли других факторов, обусловливающих потери тепла, проникновение наружного воздуха занимает все больший процент в общей сумме факторов. Сведя к минимуму неконтролируемую инфильтрацию воздуха можно сэкономить значительное количество энергии.

 

Вывоз мусора низкие цены - на сайте производится вывоз мусора.

 

Способы переработки биомассы. Водородное топливо. Магнитогидродинамические генераторы. Стр. 8. Альтернативные системы теплоснаб.

 

Главная ->  Экология 


Хостинг от uCoz