Главная ->  Экология 

 

Тепловые насосы. Переработка и вывоз строительного мусора


В.Г. Пекелис, «Белэнергосетьпроект»,

 

Н.А. Лаврентьев, Международная академия экологии,

 

Г.Г. Камлюк, Госкомгидромет Беларуси, Минск.

 

Беларусь не располагает собственными топливно-энергетическими ресурсами (ТЭР). Лишь 15% собственных ТЭР покрывают потребности страны, остальные 85% импортируются — в основном из России. В последние годы наблюдается постоянный рост цен на топливо и импортируемую электроэнергию. Этот рост будет иметь место и далее до достижения мировых цен. В связи с этим для Беларуси чрезвычайно важно включать в топливно-энергетический баланс вторичные энергоресурсы и возобновляемые источники энергии, одним из которых является ветер.

 

Ветроэнергетика, как и любая отрасль хозяйствования, должна обладать тремя обязательными компонентами, обеспечивающими ее функционирование:

 

1) ветроэнергетическими ресурсами, 2) ветроэнергетическим оборудованием, 3) развитой ветротехнической инфраструктурой.

 

1. Для ветроэнергетики Беларуси энергетический ресурс ветра практически неограничен. В стране имеется развитая централизованная электросеть и большое количество свободных площадей, не занятых субъектами хозяйственной деятельности. Поэтому размещение ветроэнергетических установок (ВЭУ) и ветроэлектрических станций (ВЭС) обусловливается только грамотным размещением ветроэнергетической техники на пригодных для этого площадях.

 

2. Возможности приобретения зарубежной ветротехники весьма ограничены вследствие отсутствия достаточного выбора именно того оборудования для ВЭУ и ВЭС, которое соответствует климатическим условиям Беларуси, а также мощного противодействия ответственных административных работников от официальной энергетики.

 

3. Отсутствие инфраструктуры по проектированию, внедрению и эксплуатации ветротехники и, соответственно, практического опыта и квалифицированных кадров можно преодолеть только в ходе активного сотрудничества с представителями развитой ветроэнергетической инфраструктуры зарубежья.

 

Темпы увеличения суммарной мощности ВЭУ и ВЭС в мире имеют тенденцию к быстрому росту. Так, суммарная мощность всех ВЭС планеты в 2001 г. составила 24,35 ГВт, а к концу 2006 г. — уже более 74 ГВт и продолжает иметь неуклонную тенденцию к увеличению. Европейская ассоциация ветроэнергетики (EWEA) пересмотрела планы роста установленных ветроэнергетических мощностей в Европе к 2010 г. от прежней цифры в 40 ГВт до 60 ГВт. На Европу приходится около 70% мировых ветровых мощностей, наибольшая часть которых расположена в Германии, Испании и Дании. В странах Европы в зависимости от ветровых потоков ветроэнергетические мощности имеют следующее базирование:

 

— внутриконтинентальное (ВЭС и единичные ВЭУ размещаются внутри континента);

 

— прибрежное (ВЭС размещаются вблизи или вдоль морского берега);

 

— морское (ВЭС размещаются в открытом море неподалеку от побережья).

 

Поскольку характеристики ветра внутри континента отличаются от характеристик ветра прибрежных зон и вблизи побережья, характеристики соответствующих ВЭУ (начальная скорость вращения, скорость достижения номинальной мощности и др.) также разнятся. Так, хорошо зарекомендовавшие себя в эксплуатации ВЭУ внутриконтинентального базирования ряда немецких фирм начинают работу со скоростей ветра 3,0-4,0 м/с и достигают номинальной мощности при скоростях 10-13 м/с. Следовательно, освоение ветроэнергетики в Беларуси необходимо вести, ориентируясь на ВЭУ зарубежного производства внутриконтинентального базирования. Карта зонального распределения среднегодовых фоновых скоростей ветра в Беларуси приведена на рисунке.

 

Согласно мировой практике, типоряд ВЭУ В12 и В14 по номинальной мощности соответствует диапазону от 1 кВт до 1,5 МВт. При этом ВЭУ В12 для континентального базирования в Европе обладают диапазоном номинальной рабочей скорости ветра в центре ветродвигателя от 12 до 14 м/с, а ВЭУ В14 прибрежного и морского базирования имеют такую номинальную скорость более 14 м/с. Определен также типоряд ВЭУ В6, В8, В10 на соответствие ветровым климатическим зонам, характерным для равнинно-холмистой местности. Для типоряда ВЭУ В6, В8, В10 на уровне оси ветродвигателя номинальная рабочая скорость ветра соответственно распределяется в диапазонах 6-8 м/с, 8-10 м/с и 10-12 м/с. Работы по оценке технического ветроэнергетического ресурса Беларуси выполнены совместно НПГП «Ветромаш», РУП «Белэнергосетьпроект» и Госкомитетом по гидрометеорологии.

 

Сведения о ветроэнергетических ресурсах Беларуси изложены в отчетах по научно-исследовательским работам и в публикациях, использованных при формировании Ветроэнергетического кадастра, который включает:

 

— информационный банк данных о ветроэнергетических характеристиках на территории Беларуси;

 

— информационную базу данных с программным обеспечением для расчетов ветроэнергоресурсов на территориях и оценки ветроэнергетического потенциала конкретной ВЭУ в конкретном месте ее внедрения;

 

— Ветроэнергетический атлас, содержащий набор карт размещения ветротехники В12 и В14 континентального базирования на отдельных территориях Беларуси и паспорта точек (площадок) преимущественного внедрения ветротехники;

 

— временные руководящие документы по применению, созданию, сертификации, строительству и эксплуатации ветротехники;

 

— временное руководство по оценке ветровых режимов по требованиям ветроэнергетики на период 2005-2020 гг.

 

Гарантированная выработка утилизируемой энергии ветра с 7% территории Беларуси составит 14,65 млрд. кВт(ч. Использование же зон с повышенной активностью ветра гарантирует выработку энергии ВЭУ до 6,5-7,5 млрд. кВт(ч с окупаемостью затрат в течение 5-7 лет. Абстрактные сведения о территориальном распределении ветроэнергоресурсов, способствующие планированию развития ветроэнергетики в Беларуси, дополнены разработкой комплекта карт и паспортизацией возвышений.

 

Эти карты, являясь основной частью Ветроэнергетического атласа Беларуси, в достаточной мере обосновывают по региональным признакам возможности практической реализации возведения ВЭУ и ВЭС на территориях страны в целом и каждой области.

 

Для первоначального этапа развития ветроэнергетики Беларуси определены 1840 площадок для строительства как одиночных ВЭУ, так и ВЭС с потенциалом более 200 млрд кВт(ч. Выявленные на территории Беларуси площадки под ветроэнергетику — это, в основном, гряды холмов высотой от 20 до 80 м с фоновой скоростью ветра 5 м/с и более, на которых можно возвести от 5 до 20 ВЭУ. Каждому внедрению должно предшествовать детальное обследование места строительства ВЭУ. Невыполнение условий по результатам обследований приведет к значительным ошибкам в оценке выработки энергии. При выборе конкретных образцов ВЭУ необходимо дополнительно учитывать ряд факторов, связанных с величиной фактического ветроэнергетического ресурса в месте непосредственного размещения ВЭУ. К таким факторам относятся: абсолютная высота местности, высота возвышения площадок и их открытость, отдаленность предполагаемого места размещения ВЭУ от потребителя и особенно от линий электропередачи, в т.ч. от трансформаторных подстанций и т.п. Выборочные обследования зон опытной эксплуатации ветротехнического оборудования на территории Беларуси показали, что при оптимальном выборе строительной площадки для возведения ВЭУ (на возвышениях и открытой местности, на берегах водных массивов и т.п.) окупаемость ВЭУ при среднегодовой скорости ветра 6-8 м/с укладывается в срок около 5 лет. Наиболее эффективно обеспечивается использование современной зарубежной ветротехники на территориях зон со среднегодовыми фоновыми скоростями не ниже 4,5 м/с на холмистом рельефе. К таким регионам относятся: возвышенные районы большей части севера и северо-запада Беларуси, центральная зона Минской области включая прилегающие с запада районы, Витебская возвышенность. Местами на обследуемых территориях возможно обнаружение не выявленной ранее энергоэффективной холмистости, а также других энергоэффективных площадок для строительства не только мощных ВЭУ, но и ВЭС (например, в продуваемых долинах большой протяженности, вблизи крупных водных массивов, на высоких откосах и т.п.).

 

Исходя из ветроэнергетического потенциала только в Минской области насчитывается 1076 строительных площадок под размещение на каждой от 3 до 10 ВЭУ континентального базирования мощностью до 1000 кВт. Среднегодовая выработка только 10% этих ВЭУ в статистическом распределении времени работы в номинальном режиме от 2500 до 3300 часов в год на срок эксплуатации установок составляет около 2676 млн кВт(ч. Соответственно среднегодовая экономия жидкого топлива составит более 800 тыс. тонн. Сроки окупаемости капитальных вложений в ветротехнику сопоставимы со сроками окупаемости малых гидроэлектростанций, парогазовых и газо-мазутных электростанций и значительно ниже данных сроков для угольных, атомных и дизельных электростанций. По завершении срока окупаемости затраты на эксплуатацию ВЭУ неизмеримо ниже аналогичных затрат для электростанций, работающих на жидком, газообразном, твердом и ядерном топливе, т.к. не нуждаются в поставках ископаемых источников энергии. Следует учитывать, что ветроэнергетическая отрасль за счет каждой ВЭУ начинает вырабатывать энергию немедленно после монтажа и при этом не требует гигантских единовременных капитальных вложений, также как и концентрированных вложений при заменах по завершении сроков эксплуатации каждой отдельной ВЭУ. Основными препятствиями к развитию ветроэнергетики в Беларуси как путем внедрения зарубежной ветротехники континентального базирования, так и посредством организации производства собственных ВЭУ остаются проблемы финансирования работ по созданию ВЭУ и ВЭС, тарифной и налоговой политики, отсутствия льгот при закупке и эксплуатации ветроэнергетического оборудования, стандартизации и сертификации продукции.

 

Литература

 

1. Рекомендации по определению климатических характеристик ветроэнергетических ресурсов. «Госкомгидромет СССР — ГГО им. А.И. Воейкова» и НПО «Ветроэн». Ленинград: Гидрометеоиздат, 1989.

 

2. НИР №12488 «Методические указания по обоснованию и разработке схемы размещения площадок под ветроэнергетические установки на территории Республики Беларусь», руководитель к.т.н. Пекелис В.Г., Минск, НИПИ «Белэнергосетьпроект», 1995.

 

3. НИР 06.4.1 «Формирование информационного банка данных по ветроэнергетическому потенциалу в зонах предполагаемого внедрения ветроустановок», руководитель к.т.н. Шадурский Г.П.; ГНТП тема «Жилищно-коммунальное хозяйство», Минск, НПГП «Ветромаш», 1998.

 

4. Лаврентьев Н.А., Жуков Д.Д. Белорусская ветроэнергетика — реалии и перспективы//Энергия и менеджмент, №3 и 4, 2002.

 

5. Лаврентьев Н., Жуков Д. Основные виды возобновляемой энергии. Потенциал Беларуси //Энергетика и ТЭК», №7, 2003.

 

Этот доклад был сделан на международном семинаре «Проблемы и перспективы развития возобновляемой энергетики в Республике Беларусь», проведенном в рамках 7-й международной научной конференции «Сахаровские чтения 2007 года: экологические проблемы XXI века» на базе Международного государственного экологического университета им. А.Д. Сахарова (Минск, 17-18 мая 2007 г.).

 

 

История энергосбережения

 

В 70-х ХХ в. во многих странах Европы наступил энергетический кризис. В эти годы европейская наука обращается к проблеме энергосбережения. Благодаря разработке тепловых насосов и запуску соответствующей государственной программы по энергосбережению в течение десяти лет в странах Европы энергетические затраты на производстве снижаются почти вдвое. Поскольку в России долгое время стоимость энергоресурсов была очень низкой, вопрос о производстве тепловых насосов не рассматривался вообще, поскольку удельные капитальные вложения в теплонасосную технику были значительно выше, чем другие, менее эффективные способы энергосбережения. В таких энергоемких отраслях, как металлургическое и нефтехимическое производство в окружающую среду сбрасываются такие объемы тепла, которые снабжали бы теплом значительную часть миллионного города. В нашей стране долгие годы в большинстве энергоемких производств были установлены теплообменники. В каждом цехе на крупном производстве были установлены тысячи теплообменных аппаратов. После резкого спада объема производств во время перестройки удельные энергозатраты возросли в несколько раз. С увеличением тарифов за тепло проблема энергосбережения стала остроактуальной. Но для экономии энергии нужны вложения. На данный момент у нас в стране существуют десятки технических разработок по экономии тепла, которые ждут своего часа, средств для внедрения. Мы все еще продолжаем загрязнять атмосферу токсичными выбросами котельных и греть небо .

 

Тепловой насос - это устройство, позволяющее утилизировать для целей отопления и горячего водоснабжения низкопотенциальное (5-40°С) тепло сбросных и возобновляемых источников. В качестве таких источников могут рассматриваться хозбытовые и промышленные сточные воды, вода рек, озер, тепло грунта и артезианских скважин. Практическое развитие получили два основных типа тепловых насосов: парокомпрессионные и абсорбционные. В испарителе парокомпрессионного насоса происходит передача тепла от низкопотенциального источника к жидкому хладону, который кипит, превращаясь в пар. Затем пары хладона сжимаются в компрессоре с повышением давления. В процессе сжатия к приводу компрессора извне подводится механическая или электрическая энергия. Конденсируясь, пары хладона передают тепло носителю системы отопления. После этого жидкий хладон попадает в испаритель с понижением давления и процесс повторяется. Этот рабочий процесс обеспечивает передачу больших количеств тепла при относительно небольших затратах энергии на привод компрессора.

 

Основные типы тепловых насосов

 

Тепловой насос (ТН) - это термодинамическая система, позволяющая трансформировать теплоту с низкого температурного уровня на более высокий. Данные машины предназначены для получения горячей воды и воздуха, пригодных для отопления и горячего водоснабжения. Необходимым условием для применения ТН является наличие низкотемпературного источника теплоты, непригодного по своим температурным параметрам для обогрева окружающей среды. В настоящее время в мире определилось два основных принципиальных направления в развитии ТН: парокомпрессионные тепловые насосы (ПТН) и абсорбционные тепловые насосы (АТН).

 

Парокомпрессионные тепловые насосы

 

По низкотемпературному источнику теплоты и нагреваемой среде ПТН делятся на типы вода-вода , воздух-вода , воздух-воздух , вода-воздух . По типу используемого компрессорного оборудования - на спиральные, поршневые, винтовые и турбокомпрессорные. По виду привода компрессора - на электроприводные, с приводом от двигателя внутреннего сгорания, газовой или паровой турбины. В качестве рабочего тепла в данных машинах используются хладоны - преимущественно фторсодержащие углеводороды, так называемые фреоны.

 

Тепловой насос НТ-60 совмещает в одном аппарате две функции, холодильной машины и теплового насоса. Теплопроизводительность - 60 кВт, потребляемая мощность - 15 кВт, температура воды на входе в испаритель - 15°С, расход воды в испарителе - 10 м /ч, температура воды на выходе из конденсатора - 62°С, расход воды через конденсатор 10 м /ч, холодильный агент R134а.

 

Тепловой насос НТ-400 предназначен для высокоэкономичного преобразования больших количеств низкопотенциального тепла (5-40°С) в тепло более высокого температурного потенциала (более 60°С). Каждый киловатт энергии, затраченной на электропривод ТН-400, позволяет получить 4 кВт тепла. Теплопроизводительность - 400 кВт, потребляемая мощность - 132 кВт, температура воды на входе в испаритель - 20°С, расход воды в испарителе - 30м /ч, температура воды на выходе из конденсатора - 60°С, расход воды через конденсатор 30 м /ч, холодильный агент R134а.

 

Абсорбционные тепловые насосы

 

АТН делятся на два основных вида, водоаммиачные и солевые. В водоаммиачных абсорбентом является вода, а хладагентом аммиак. В солевых машинах абсорбентом является водный раствор соли, а хладагентом вода. В мировой практике используют преимущественно солевые ТН. Процессы переносы теплоты совершаются с помощью совмещенных прямого и обратного термодинамического циклов, в отличие от парокомпрессионных ТН, в которых рабочее тело (хладон) совершает только обратный термодинамический цикл. По отечественной классификации абсорбционные бромисто-литиевые машины подразделяются на повышающие и понижающие (более распространенные) термотрансформаторы. По виду потребляемой высокотемпературной теплоты АБТН подразделяется на машины с паровым (водяным) и с огневым обогревом на газообразном или жидком топливе. По термодинамическому циклу АБТН бывают с одноступенчатой или двухступенчатой схемой регенерации раствора, а также двухступенчатой абсорбцией. Схема работы бромисто-литиевого теплового насоса такова. В трубное пространство испарителя подается низкотемпературная вода, где она охлаждается за счет кипения в вакууме и стекает в виде пленки по межтрубному пространству. Образовавшийся при этом пар абсорбируется (поглощается) водным раствором бромистого лития, стекающим по межтрубному пространству. При этом раствор нагревается и его теплота отводится водой, протекающей внутри труб абсорбера. Таким образом происходит перенос тепла с низкотемпературного уровня в испарителе на более высокий в абсорбере. Поглощая водяной пар, раствор бромистого лития становится слабым, снижается его концентрация. Для регенерации раствор подается через теплообменник в генератор, где он упаривается (концентрируется) за счет источника тепла или сжигаемого газообразного или жидкого топлива. Крепкий раствор подается в абсорбер через теплообменник. Полученный в генераторе пар направляется в межтрубное пространство конденсатора. Нагреваемая вода подается в абсорбер и конденсатор и отдается потребителю. Все процессы протекают под вакуумом.

 

Энергетическая эффективность ТН

 

Парокомпрессионные и абсорбционные ТН потребляют разные виды энергии: ПТН - механическую (электрическую), АТН - тепловую. Поэтому удельным показателем для сравнения может быть расход топлива на выработку теплоты. Такой подход правомерен, поскольку в России базовыми электростанциями являются тепловые. Коэффициент преобразования ПТН зависит в основном от величины перепада температур между нагреваемой и охлаждаемыми средами. Чем больше перепад, тем ниже эффективность ПТН. В зависимости от этого перепада в случае с АБТН применяют машины с разными типами регенерации раствора и схемой абсорбции. После расчетов целесообразности использования разных типов насосов в качестве автономного источника горячей воды, выяснилось, что ПТН с электроприводом от ТЭЦ при коэффициенте преобразования энергии 2,6-3 по сравнению с котлом экономию топлива не даёт. С приводом компрессора от двигателя внутреннего сгорания или газовой турбины продуктов сгорания топлива и системы охлаждения двигателя дает значительную экономию уже при коэффициенте 1,5. Однако экономическая целесообразность применения данного типа ТН должна определяться на основе технико-экономических расчетов, т. к. удельные капиталозатраты на данный тип ТН в несколько раз выше затрат на котел. Применение ПТН с низким коэффициентом приводит к неоправданно высоким срокам окупаемости вложений. АБТН всех типов по сравнению с котлом умеют удельный расход топлива на 40-55% ниже, что означает эффективность использования топлива в АБТН в 1,7-2,2 раза выше, чем в котле. При этом себестоимость производимой в АБТН теплоты на 25-30% ниже, чем в котле. Особо стоит рассмотреть эффективность ТН в составе ТЭЦ. В условиях существующих ТЭЦ часто возникает необходимость увеличения мощности теплофикационного отбора станции. Как правило, эту проблему решают установкой дополнительных пиковых котлов. Теплофикационную мощность станции можно существенно увеличить с помощью ТН без увеличения расхода топлива. При этом себестоимость дополнительной теплоты при существующих ценах на АБТН составляет 60-80 руб/Гкал, а срок окупаемости вложений не превышает 1-2 лет.

 

Объединение в рамках одной теплопроизводящей установки теплоисточника на привозном органическом топливе и теплового насоса на базе местных возобновляемых или сбросных источников низкопотенциального (5-40°С) тепла - это один из эффективных способов одновременного повышения надежности, сокращение потребления органического топлива и уменьшения загрязнения окружающей среды. Основным достоинством такой термокотельной является возможность покрытия относительно небольшими по мощности тепловыми насосами, работающими в базовом режиме, значительной части сезонной отопительной нагрузки около 88%. При совместной работе теплового насоса с электроприводом и котла можно снизить потребление угля и уровень вредных выбросов в атмосферу почти в десять раз.

 

АТТ: теория и практика

 

Несмотря на бурные дискуссии об актуальности проблемы энергосбережения и экологии, развитие абсорбционной теплонасосной техники в России находится в зачаточном состоянии. Причиной этого является не только недостаток средств, но и особенности нашей энергетики, а также климатические условия страны. Использование тепловых насосов представляет собой двухцелевую систему: выработка холода для систем кондиционирования и использование теплоты окружающего воздуха для отопления помещений. Этот класс машин не годится для температуры -20°С, обычной для наших широт, поэтому парокомпрессионные тепловые насосы нашли у нас более широкое применение. Шведский опыт показывает, что для выработки тепла на горячее водоснабжение и отопление можно использовать температуру воды +4°С. Но такое решение оптимально в случае, когда основным источником электроэнергии является ГЭС и АЭС. В большинстве регионов России основным источником энергии являются тепловая энергетика (ТЭЦ), поэтому использовать тепло морской воды с помощью парокомпрессионных электроприводных тепловых насосов экономически нецелесообразно - не происходит экономии топлива. Вот почему наиболее перспективным для российских широт является абсорбционный класс машин.

 

Абсорбционные технологии нашли широкое применение во всем мире в большей степени в качестве охладительного оборудования. Первые такие трансформаторы теплоты (АТТ) были разработаны в XIX веке. Несмотря на продолжительную историю АТТ, в ХХ веке основным холодильным оборудованием являлись парокомпрессионные холодильные машины с электрическим приводом. Бромисто-литиевые трансформаторы теплоты (АБТТ) стали альтернативой электроприводным охладителям. В 1999 году в мире было произведено около 12 тыс. единиц АБТТ средней и крупной мощности, а 2001 году их мировое производство достигло 15 тыс. единиц. Основной прирост приходится на Южную Корею и Китай. Такое широкое распространение производства АБТТ объясняется высокими потребительскими качествами: экологическая чистота, минимальное потребление энергии, бесшумность работы, длительный срок службы. Рабочим веществом АБТТ является вода, а абсорбентом - водный раствор соли бромида лития (нетоксичное, пожаробезопасное вещество). Все процессы в АБТТ протекают под вакуумом, что исключает попадание вещества на внешние теплоносители. Использование АБТТ позволяет экономить 180-200 кВт/ч электроэнергии на каждые 1000 кВт/ч произведенного холода. Поскольку хладагентом является вода, то машины этого типа не влияют на озоновый слой атмосферы и не создают парникового эффекта, как парокомпрессионные машины. Кроме этого имеется возможность одновременного нагрева разной воды, например, для горячего водоснабжения и отопления. Тепловые насосы типа АБТН-П и АБТН-Т могут использоваться как для нагрева, так и для охлаждения воды в технологических целях. Себестоимость дополнительной утилизируемой теплоты, получаемой в АБТН с паровым (водяным) обогревом, при существующих ценах на отечественные АБТТ составляет 65-85 руб/Гкал в зависимости от конкретных условий размещения теплонасосной установки. Срок окупаемости такого энергоносителя составляет от 2 до 4 лет в зависимости от теплоты замещаемого источника. С ожидаемым ростом цен в России на энергоносители эффективность применения абсорбционных машин будет возрастать.

 

40 лет спустя: состояние проблемы

 

1. Абсорбционная теплонасосная техника

 

В настоящее время основными производителями абсорбционной теплонасосной техники являются фирмы Японии и США ( Hitachi , Sanyo , Daikin , Kawasaki , Ebara , Carrier , York и другие). В ряде индустриально развитых стран имеются специальные государственные программы по развитию абсорбционных теплонасосных установок. Так, еще с 1979 года в Японии в рамках проекта Лунный свет разработаны и внедряются крупные (мощностью более 300 кВт) АБТН.

 

Производство АБТТ в СССР было впервые начато в 60-х гг на заводе Пензхиммаш , где серийно выпускались холодильные машины мощностью 1100 и 3000 кВт. Всего было выпущено около 600 АБТТ. К концу 80-х годов выпуск был прекращен из-за низких потребительских качеств. Отечественные машины существенно уступали импортным по габаритам, массе, сроку службы, уровню системы контроля и качеству изготовления. Работы по созданию абсорбционных машин нового поколения начались только в середине 90-х по инициативе Академика В.Е.Накорякова, который создал специальное конструкторское бюро (ООО ОКБ Теплосибмаш ). Работы велись под научным руководством Института теплофизики СО РАН совместно с Санкт-Петербургским университетом низкотемпературных и пищевых технологий при финансовой поддержке РАО ЕЭС России совместно с АДС Теплосиб , АО Новосибирскэнерго , АО Алтайэнерго . В результате был создан и испытан ряд опытных образцов АБТТ различных типов машин. В 1994 году разработан насос мощностью 25 кВт, а в конце 1995 - уже мощностью 2000 кВт. АБТН-2000Г (тепловой насос на газообразном жидком топливе). Его испытания были проведены на Новосибирском металлургическом заводе в цехе горячей прокатки. Затем на Барнаульском заводе синтетического волокна проведены испытания генератора теплового насоса с топкой на мазуте (АБТН-2000 М). Успешно эксплуатируется тепловой насос с паровым обогревом мощностью 2000 кВт (АБТН-2000 П) на Новосибирской ТЭЦ-4 с января 1999 г.

 

2. Парокомпрессионная теплонасосная техника

 

Реализация концепции создания термокотельных (комбинированных теплоисточников) осуществляется в настоящее время при финансовой поддержке администрации НСО в с. Козино Усть-Тарского района, где в помещении котельной совместно работает насос НТ-700 мощностью 0,6 Гкал/ч и угольные котлы. В реализации идеи совмещенных источников тепла СКБ ИПИ помогают Сибирский энергетический институт им. Л. А. Мелентьева (г. Иркутск) и Институт экономики и организации промышленного производства СО РАН, а также предприятие по производству оборудования для ЖКХ - ЗАО Сибтепломонтаж . (г. Новосибирск). В разработке, создании и внедрении парокомпрессионных тепловых насосов активно участвуют новосибирские фирмы ООО СКБ ИПИ , ЗАО Энергия , ООО Теплосибмаш . Их разработки являются практической реализацией многолетних фундаментальных прикладных исследований, проводимых Институтом теплофизики СО РАН. Несмотря на налаживание производства, теоретическая исследовательская работа продолжается. Научные исследования в этой области сейчас продолжаются в рамках интеграционного проекта, в котором участвуют три академических института СО РАН. Среди прикладных разработок, доведенных до практической реализации, отличаются работы СКБ ИПИ - самостоятельного производственно-технологического и внедренческого подразделения Института перспективных исследований. В городе Мирный Республики Саха (Якутия) в 2003 году осуществлен типовой проект создания теплонасосной станции мощностью 1,6 Гкал/ч на базе четырех насосов НТ-400. Проект может быть типовым для целого ряда промышленных предприятий сибирского региона. Совместно с МУП Горводоканал г. Новосибирска впервые в России в 2002 году реализован проект автономного теплоснабжения канализационно-насосной станции на базе тепла неочищенных сточных вод с применением теплового насоса НТ-60, который удостоился большой золотой медали Сибирской ярмарки в номинации Энерго- и ресурсосбережение . На базе этих насосов в 2003 году запущена в эксплуатацию теплонасосная установка на сточных водах в г. Новокузнецке для отопления промышленного предприятия. Проект начинает работать в рамках вертикально интегрированной структуры: от научных и проектных до производственных и внедренческих предприятий, которые решают вопросы эксплуатации тепловых насосов в промышленности и жилищно-коммунальном хозяйстве сибирского региона. Также ведутся работы с ведущими предприятиями Иркутской области (ОАО Иркутскэнерго , ОАО Саянхимпласт , ООО Усольехимпром , ОАО Байкальский ЦБК , ОАО Ангарский нефтехимический комбинат и др.), Красноярского края (ОАО Ачинский горноземный комбинат ), Алтайского края (МУП Барнаульский водоканал , Республики Алтай (Минстройжилкомхоз), Самарской области (ОАО АвтоВАЗ ), Тюменской области (ЖКХ Ханты-Мансийского района), Хабаровского края (МУП Водоканал ) и др.

 

Эффективность каждого вида (абсорбционного и парокомпрессионного) теплонасосного оборудования зависит от конкретных условий объекта и требует точного технико-экономического анализа с учетом различных принципов работы оборудования, обуславливающих разные энергозатраты и разную себестоимость единицы получаемого тепла. В каждом отдельном случае следует рассчитывать конкретную экономическую и энергетическую выгоду, эксплуатационные затраты. Этот фактор - единственный и основной критерий при установке любого теплового оборудования.

 

Вывоз строительного мусора несколько. ссылка по вывозу строительного мусора .

 

Российский газ дотечет до шанхая. Особенности развития мировой ветроэнергетики. Новая страница 2. Некоторые замечания по гост р516. Будущее за гелиосистемами.

 

Главная ->  Экология 


Хостинг от uCoz